miércoles, 18 de junio de 2014

Cuantos

Estructura del átomo

En el átomo distinguimos dos partes: el núcleo y lacorteza.
- El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, losneutrones. La masa de un protón es aproximadamente igual a la de un neutrón.
Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z.
- La corteza es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón.
Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones.

Isótopos
La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones.
Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico.
Para representar un isótopo, hay que indicar el número másico (A) propio del isótopo y el número atómico (Z), colocados como índice y subíndice, respectivamente, a la izquierda del símbolo del elemento

HISTORIA DEL ÁTOMO
El conocimiento del átomo ha tenido un desarrollo muy lento, ya que la gente se limitaba a especular sobre él. Demócrito (1) fue el primero en afirmar que la materia está compuesta por átomos, y que estos eran indivisibles. Y hay quedo la cosa hasta que Dalton, (2) en 1803 lanzó su teoría atómica de la materia. En ella decía que todos los elementos que se conocen están constituidos por átomos. A partir de este momento la física se centra en el estudio del átomo. En 1811 Amedeo Avogadro formuló una ley que lleva su nombre “ley de abogadro”. Esta ley viene a decir que dos volúmenes iguales de diferentes gases y en las mismas condiciones tienen el mismo número de moléculas, pero no el mismo número de átomos. En 1906 J.J. Thomson (4), supuso que Dalton estaba equivocado, porque el átomo estaba compuesto de electrones.
A medida que la tecnología iba avanzando, el estudio del átomo se abría camino con más facilidad. En 1896 Becquerel (5), descubridor de la radioactividad supuso que los electrones tenían carga eléctrica. Cosa que Millikan (6), confirmó veinte años después. En 1911 Rutherford (7), lanzó la primera teoría sobre la estructura del átomo, en ella decía que los electrones giraban alrededor del núcleo como si fuera un sistema solar en miniatura. Esta teoría se mantuvo hasta 1913, fecha en la cual Bohr (8), lanzó una nueva teoría atómica, en ella decía que los electrones giran alrededor del núcleo en órbitas. Esta teoría todavía no era la definitiva, pero si la base de las teorías actuales sobre el átomo. En 1919 Rutherford descubrió que el núcleo de los átomos estaba compuesto por protones, y que estos tenían carga positiva. Y en 1932 Chadwick (9), descubrió el neutrón, una de las partículas fundamentales de la materia que se encuentra en el núcleo del átomo. Como ves el átomo actual, tal y como se conoce hoy, a pasado por un proceso de estudio e investigación muy largo.
1.DEMÓCRITO:
Demócrito fue un filósofo griego presocrático (460 a.C. -370 a.C.) fue el primero en dar el concepto de átomo, según él todas las cosas están compuestas de partículas diminutas, indivisibles e indestructibles a las que llamó atoma, “indivisible”.
2. DALTON:
John Dalton nació en 1766 y murió en 1844. Fue un importante científico británico. Su descubrimiento más importante es la “Ley de Dalton de las presiones parciales”; según la cual, la presión ejercida por una mezcla de gases es igual a la suma de las presiones de cada gas por separado, (cada uno de ellos ocupando el mismo volumen que la mezcla). Estos estudios de las propiedades físicas del aire atmosférico y otros gases le llevaron a la conclusión de que la materia está formada por átomos de diferentes masa que se combinan para formar compuestos, teoría atómica de la materia. Esta hipótesis se basa en los siguientes postulados:
  • Los elementos están constituidos por átomos, que son partículas materiales independientes, inalterables e indivisibles.
  • Los átomos de un mismo elemento son iguales en masa y en el resto de propiedades.
  • Los átomos de distintos elementos tienen diferentes masa y propiedades.
  • Los compuestos se forman por la unión de átomos de los correspondientes elementos en relación de números enteros.
  • En las reacciones químicas, los átomos ni se crean ni se destruyen, únicamente se redistribuyen.
  • Dalton dio a conocer por primera vez su teoría atómica en 1803, habían pasado más de dos mil años desde que Demócrito nombrara el átomo. También dio las masa atómicas de varios elementos ya conocidos en relación con la masa del hidrógeno.
    3. FARADAY:
    Michael Faraday, físico y químico británico, nació en 1791 y murió en 1867. Entre otras muchas cosas, investigó los fenómenos de la electrólisis, y descubrió dos leyes fundamentales:
    - la masa de una sustancia depositada por una corriente eléctrica en una electrólisis es proporcional a la cantidad de electricidad que pasa por el electrólito.
    - las cantidades de las sustancias electrolíticas depositadas por la acción de una misma cantidad de electricidad son proporcionales a la masaequivalente de las sustancias.
    Esto viene a decir:
    • La cantidad de material depositada en el electrodo es proporcional a la intensidad de corriente que atraviesa el electrólito.
    • Átomo. Historia e investigadores
      la masa de los elementos transformados es proporcional a las masas equivalentes de los elementos ( sus masas atómicas divido por sus valencias).
    4 THOMSON:
    Sir Joseph Jonh Thomson nació y murió en Inglaterra en 1856 y 1940 respectivamente. Sus investigaciones con los rayos catódicos le llevaron a suponer que el átomo no era la partícula más pequeña, porque estaba compuesto de electrones ( partículas muy inferiores al átomo). Elaboró la teoría “del pudín de pasas”, en ella decía que los electrones eran “ciruelas” negativas incrustadas en un “pudín” de materia positiva. En 1906 recibió el Premio Nobel.
    5.BECQUEREL:
    Antonie Henri Becquerel nació en 1852 y murió en 1908. En 1896 descubrió por accidente el fenómeno conocido por “radioactividad”. Observó que las sales de uranio podían ennegrecer una placa fotográfica aun estando separado de la misma por un vidrio. También observó que los rayos que producían ese oscurecimiento descargaban un electroscopio lo que indica que tenían carga eléctrica. Recibió el Premio Nobel en 1903 por sus estudios sobre la radioactividad.
    6.MILLIKAN:
    Robert Andrews Millikan (1868-1953). En 1923 recibió el Premio Nobel de física por los experimentos que le permitieron medir la carga de un electrón. También realizó una importante investigación de los rayos cósmicos.
    7.RUTHERFORD:
    Nelson Rutherford (1871-1937). Fue físico y químico, británico. Hoy en día todavía se le considera como uno de los más importantes investigadores de la física nuclear.
    Poco después de que Becqueler descubriera la radioactividad, identificó los tres componentes que la componían a los que llamó rayos: alfa, beta y gamma. En 1911 su estudio sobre la radiación le llevó a formular una teoría sobre la estructura del átomo, fue el primero en definir el átomo como un núcleo positivo, alrededor del cual giran los electrones de carácter negativo, esta teoría se conoce hoy en día como “la teoría atómica de Rutherford”. Esta teoría defiende la postura de que los electrones giran alrededor del núcleo como un sistema solar en miniatura.
    En 1919 expuso gas nitrógeno a una fuente radiactiva que emitía partículas alfa. Algunas de estas partículas chocaban con los átomos de nitrógeno originando oxigeno. El núcleo de cada átomo transformado tenía partículas positivamente cargadas, a estas partículas se las denominó protones. Investigaciones posteriores demostraron que los protones formaban parte del núcleo de todos los elementos.
    8. BOHR:
    Neils Bohr físico y químico de nacionalidad danesa nació en 1885 y murió en 1962. En 1913 desarrolló una hipótesis conocida hoy en día como “teoría atómica de Bohr”. Para formular esta teoría partió de la teoría atómica de Rutherford. Esta teoría viene a decir que los electrones están situados en órbitas o capas definida a una cierta distancia del núcleo y que tienen un movimiento continuo. La colocación de esto electrones se denomina configuración electrónica. Hay siete capas electrónicas. La primera capa se llena con dos electrones la segunda con ocho y así sucesivamente hasta la séptima, pero no se conoce ningún elemento que tenga llena la séptima capa. La hipótesis de Bohr solucionaba varios problemas que se le habían planteado a la de Rutherford, pero también fallaba ante otros. En 1922 recibió el Premio Nobel por su gran trabajo en la física nuclear.
    9.CHADWICK:
    James Chadwick (1891-1974), físico y químico británico. Al él se le atribuye el descubrimiento del neutrón, una de las partículas fundamentales de la materia (1932). En 1935 recibió el Premio Nobel por su descubrimiento.
    ATOMO ACTUAL
    En la actualidad se sabe que el átomo está compuesto por un núcleo y una corteza. El núcleo a su vez está compuesto por neutrones y protones:
    • protón: es una partícula nuclear con carga positiva
    • neutrones: partícula nuclear sin carga
    El neutrón y el protón tienen prácticamente la misma masa.
    En la corteza se encuentran los electrones. Estos electrones giran en regiones del espacio llamadas orbitales. El tamaño del átomo está determinado por el movimiento del electrón en estas regiones.
    En todos los átomos el número de protones es igual al número de electrones. Este número está determinado por número atómico.
    A la suma del número de protones y neutrones se le llama número másico.

    Fusión y Fisión


    Fisión nuclear

    La fisión nuclear es una reacción en la cual al hacer incidir neutrones sobre un núcleo pesado, éste se divide en dos núcleos, liberando una gran cantidad de energía y emitiendo dos o tres neutrones.
    Fue descubierta por O. Hahn y F. Strassmann en 1938, al detectar elementos de pequeña masa en una muestra de uranio puro irradiada con neutrones.
    El proceso de fisión es posible por la inestabilidad que tienen los núcleos de algunos isótopos de elementos químicos de alto número atómico, como por ejemplo el uranio 235, debido a la relación existente entre el número de partículas de carga eléctrica positiva (protones) y el número de partículas nucleares de dichos núcleos (protones y neutrones).

    Basta una pequeña cantidad de energía como la que transporta el neutrón que colisiona con el núcleo, para que pueda producirse la reacción de fisión. A su vez, los neutrones emitidos en la fisión de un núcleo pueden ocasionar nuevas fisiones al interaccionar con nuevos núcleos fisionables que emitirán nuevos neutrones y así sucesivamente. A este efecto multiplicador se le conoce con el nombre de reacción en cadena.

    La primera reacción de fisión en cadena sostenida la consiguió Enrico Fermi en 1942, en la Universidad de Chicago. En una pequeña fracción de segundo, el número de núcleos que se han fisionado libera una energía un millón de veces mayor que la obtenida al quemar un bloque de carbón o explotar un bloque de dinamita de la misma masa.

    Cuando se consigue que sólo un neutrón de los liberados produzca una fisión posterior, el número de fisiones que tienen lugar por segundo es constante y la reacción está controlada.

    En este principio de fisión están basados los 436 reactores nucleares que funcionan en todo el mundo y que producen el 17% de la electricidad que se consume mundialmente.

    Fusión nuclear

    La fusión nuclear es la reacción en la que dos núcleos muy ligeros, en general el hidrógeno y sus isótopos, se unen para formar un núcleo más pesado y estable, con gran desprendimiento de energía. La energía producida por el Sol tiene este origen.
    Para que se produzca la fusión, es necesario que los núcleos cargados positivamente se aproximen venciendo las fuerzas electrostáticas de repulsión. En la Tierra, donde no se puede alcanzar la gran presión que existe en el interior del Sol, la energía necesaria para que los núcleos que reaccionan venzan las interacciones se puede suministrar en forma de energía térmica o utilizando un acelerador de partículas.
    La solución más viable es la fusión térmica. Estas reacciones de fusión térmica, llamadas reacciones termonucleares, se producen en los reactores de fusión y fundamentalmente con los isótopos de hidrógeno.
    El aprovechamiento por el hombre de la energía de fusión pasa por la investigación y el desarrollo de sistemas tecnológicos que cumplan dos requisitos fundamentales: calentar y confinar. Calentar para conseguir un gas sobrecalentado (plasma) en donde los electrones salgan de sus órbitas y donde los núcleos puedan ser controlados por un campo magnético; y confinar, para mantener la materia en estado de plasma o gas ionizado, encerrada en la cavidad del reactor el tiempo suficiente para que pueda reaccionar.
    La ganancia energética de la fusión consiste en que la energía necesaria para calentar y confinar el plasma sea menor que la energía liberada por las reacciones de fusión.
    Este tipo de reacciones son muy atractivas como fuente de energía ya que el deuterio no es radiactivo y se encuentra de forma natural y prácticamente ilimitada en la naturaleza. El tritio no se presenta de forma natural y además es radiactivo. Sin embargo las investigaciones están básicamente centradas en las reacciones deuterio-tritio, debido a que liberan una mayor energía y la temperatura a la que tiene lugar la fusión es considerablemente menor que en las otras.
    La tecnología de fusión se está desarrollando en dos líneas principales:
    • Fusión por confinamiento magnético: Las partículas eléctricamente cargadas del plasma son atrapadas en un espacio limitado por un campo magnético al describir trayectorias helicoidales determinadas por las líneas de fuerza de dicho campo. El dispositivo más desarrollado tiene forma toroidal y se denomina Tokamak (siendo esta la tecnología utilizada en el proyecto ITER).
    • Fusión por confinamiento inercial: Consiste en crear un medio tan denso que las partículas no tengan prácticamente ninguna posibilidad de escapar sin chocar entre sí. Súbitamente impactada por poderosos haces luminosos creados por láser, una pequeña esfera de un compuesto sólido de deuterio y tritio implosiona bajo los efectos de la onda de choque. De esta forma, se hace cientos de veces más densa que en su estado sólido normal y explosiona bajo los efectos de la reacción de fusión.
    Actualmente hay reactores de investigación para lograr producir electricidad a través de este proceso. Cabe destacar el Reactor Experimental Termonuclear Internacional ITER en el que participan la Unión Europea, China, Japón, Rusia, India, Corea del Sur y Estados Unidos.

    Radiactividad y Nucleo

    Nucleo Y Radioactividad

    El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99.99% de la masa total del átomo.
    Está formadopor protones y neutrones(denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones serepelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo determina el elemento químico al que pertenece. Los núcleos atómicos con elmismo número de protones, pero distinto número de neutrones, se denominan isótopos; por esta razón, átomos de un mismo elemento pueden tener masas diferentes.
    Laexistencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicosde helio emitidos por rocas radiactivas. La mayoría de esas partículas traspasaban la lámina, pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleoatómico.
    RADIOACTIVIDAD
    La radiactividad o radioactividad es la emisión de energía por la desintegración de núcleos de átomos inestables. La energía emitida son partículascon carga eléctrica u ondas electromagnéticas, que ionizan el medio que atraviesan. Una excepción lo constituye el neutrón, que no posee carga, pero ionizala materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación: alfa, beta, gamma y neutrones. 
    Así pues podemos definir radioactividadcomo la propiedad que presentan determinadas sustancias (sustancias radioactivas) de emitir radiaciones capaces de penetrar en cuerpos opacos e ionizar el aire

    Relatividad, Predecibildad y Caos

    Relatividad, Predecibilidad y Caos

    Teoría de la relatividad
    La teoría de la relatividad está compuesta a grandes rasgos por dos grandes teorías (la de la relatividad especial y la de la relatividad general) formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica y el electromagnetismo.
    La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
    Relatividad especial (relatividad restringida)
    Publicada por Albert Einstein en 1905, describe la física del movimiento en el marco de un espacio-tiempo plano, describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales.

    Relatividad General
    Publicada por Albert Einstein en 1915 y 1916.
    La relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos de inercia, incluso añadiendo la llamada constante cosmológica a sus ecuaciones de campo para este propósito.



    Predecibilidad

    Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. No se trata sólo de “decir antes”, sino de “decirlo bien”, o sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el futuro con cierto éxito.
    Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable que se considere representativa de una cierta situación.
    También se pueden hacer predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos extremos, caso por ejemplo de los huracanes y tormentas tropicales
    Normalmente ambos tipos de predicción están ligados y se realizan a la vez, como lo prueban los productos que ofrecen las s grandes agencias e institutos de Meteorología y Climatología.
    Pueden construirse de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas mediante diversas técnicas, estudiando y comparando los resultados.

    CAOS

    Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro; complicando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinismos  es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.
    Los sistemas dinámicos se pueden clasificar básicamente en:
    Estables, Inestables, Caóticos.
    Un sistema estable tiende a lo largo del tiempo a un punto, u órbita, según su dimensión (a tractor o sumidero). Un sistema inestable se escapa de los atractores. Y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un a tractor por el que el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un a tractor fijo.
    A tractores extraños
    La mayoría de los tipos de movimientos mencionados en la teoría anterior suceden alrededor de a tractores muy simples, tales como puntos y curvas circulares llamadas ciclos límite. En cambio, el movimiento caótico está ligado a lo que se conoce como a tractores extraños, que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso a tractor de Lorenz conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.
    EFECTO MARIPOSA La idea de la que parte la Teoría del Caos es simple: en determinados sistemas naturales, pequeños cambios en las condiciones iniciales conducen a enormes discrepancias en los resultados. Este principio suele llamarse efecto mariposa debido a que, en meteorología, la naturaleza no lineal de la atmósfera ha hecho afirmar que es posible que el aleteo de una mariposa en determinado lugar y momento, pueda ser la causa de un terrible huracán varios meses más tarde en la otra punta del globo.